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Abstract. Understanding what people say and really mean in tweets
is still a wide open research question. In particular, understanding the
stance of a tweet, which is determined not only by its content, but also
by the given target, is a very recent research aim of the community.
It still remains a challenge to construct a tweet’s vector representation
with respect to the target, especially when the target is only implicitly
mentioned, or not mentioned at all in the tweet. We believe that better
performance can be obtained by incorporating the information of the
target into the tweet’s vector representation. In this paper, we thus pro-
pose to embed a novel attention mechanism at the semantic level in the
bi-directional GRU-CNN structure, which is more fine-grained than the
existing token-level attention mechanism. This novel attention mecha-
nism allows the model to automatically attend to useful semantic fea-
tures of informative tokens in deciding the target-specific stance, which
further results in a conditional vector representation of the tweet, with
respect to the given target. We evaluate our proposed model on a re-
cent, widely applied benchmark Stance Detection dataset from Twitter
for the SemEval-2016 Task 6.A. Experimental results demonstrate that
the proposed model substantially outperforms several strong baselines,
which include the state-of-the-art token-level attention mechanism on
bi-directional GRU outputs and the SVM classifier.

Keywords: Target-specific Stance Detection, Text Classification, Neu-
ral Network, Attention Mechanism

Target-specific Stance Detection is a problem that can be formulated as fol-
lows: given a tweet X and a target Y , the aim is to classify the stance of X
towards Y into three categories, Favour, None or Against. The target may be a
person, an organisation, a government policy, a movement, a product, etc. [8].
Target-specific Stance Detection is a different problem from Aspect-level Senti-
ment Analysis [11, 15] in the following ways: the same stance can be expressed
through positive, negative or neutral sentiment [9]; the target of interest of the
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Stance Detection does not necessarily have to occur in the tweet, as the target-
specific stance can be expressed by mentioning the target implicitly, or by talking
about other relevant targets. Besides typical tweets characteristics, such as being
short and noisy, the main challenge in this task is that the decision made by the
classifier has to be target-specific, whilst having very little contextual informa-
tion or supervision provided. Example training data from the benchmark target-
specific Stance Detection dataset for SemEval-2016 Task 6 [8] can be found in
Table 1. Deep neural networks enable the continuous vector representations of

Table 1: Examples of target-specific stance detection.
Target Tweet Stance

Donald Trump #DonaldTrump my tell it like it is but his comments
speaks to a prejudice and cold heart.

Against

Hillary Clinton I love the smell of Hillary in the morning. It smells
like Republican Victory.

Against

Hillary Clinton Just think how many emails Hillary Clinton can
delete with today’s #leapsecond

Against

Climate Change Coldest and wettest summer in memory. Favour

underlying semantic and syntactic information in natural language texts, and
save researchers the efforts of feature engineering [14, 15]. Recently, they have
achieved significant improvements in various natural language processing tasks,
such as Machine Translation [2, 3], Question Answering [14], Sentiment Analy-
sis [6, 11, 15, 18], etc. However, applying deep neural networks on target-specific
Stance Detection has not been successful, as their performances have, up to now,
been slightly worse than traditional machine learning algorithms with manual
feature engineering, such as Support Vector Machines (SVM) [8].

In this work, the above challenges are tackled, based on our intuition that
the target information is vital for the Stance Detection, and that the vector rep-
resentations for the tweets should be “aware” of the given targets. Since not all
parts in the tweet are equally helpful for the Stance Detection task towards the
specified target, we firstly apply the state-of-the-art token-level attention mecha-
nism [2]. This allows neural networks to automatically pay more attention to the
tokens that are more relevant to the target and more informative for detecting
the target-specific stance. Importantly, a given token can be interpreted differ-
ently, according to different targets, and the semantic features in the token’s
vector representation can be of different levels of importance, conditional on the
given target. We propose a novel attention mechanism, which extends the cur-
rent attention mechanism, from the token level, to the semantic level, through a
gated structure, whereby the tokens can be encoded adaptively, according to the
target. We compare the models we propose based on the token-level attention
mechanism and the novel semantic-level attention mechanism with several base-
lines, on the target-specific Stance Detection dataset for the SemEval-2016 Task
6.A [8], which is currently the most widely applied dataset on target-specific
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Stance Detection in tweets. The experimental results show that substantial im-
provements can be achieved on this task, compared with all previous neural
network-based models, by inferencing conditional tweet vector representations
with respect to the given targets; the neural network model with semantic-level
attention also outperforms the SVM algorithm, which achieved the previous best
performance in this task [8]. Additionally, it should be noted that our results
are obtained with a minimum of supervision, with no external domain corpus
collected to pre-train target-specific word embeddings, and no extra sentiment
information annotated. Moreover, there are no target-specific configurations or
hand-engineered features involved, thus the proposed models can be easily gener-
alised to other targets, with no additional efforts.

1 Neural Network Models for Target-specific Stance
Detection in Tweets

In this section, we first describe two baseline models, the bi-directional Gated Re-
current Unit (biGRU) model, and the model that stacks a Convolutional Neural
Network (CNN) structure on the outputs of the biGRU (biGRU-CNN) model.
We then show how we extend these two baseline models, by incorporating the
target information through token-level and semantic-level attention mechanisms,
obtaining the AT-biGRU model and the AS-biGRU-CNN model, respectively.
Finally, we demonstrate methods to generate the target embedding, and how to
obtain the stance detection result based on the tweet vector representation, as
well as other model training details.

1.1 BiGRU Model

GRU [3] aims at solving the gradient vanishing or exploding problems, by intro-
ducing a gating mechanism. It adaptively captures dependencies in sequences,
without introducing extra memory cells. GRU maps an input sequence of length
N , [x1, x2, · · · , xN ] into a set of hidden states [h1, h2, · · · , hN ] as follows:

rn = σ(Wrxn + Urhn−1 + br) (1)

zn = σ(Wzxn + Uzhn−1 + bz) (2)

h̃n = tanh(Whxn + Uh(rn ⊙ hn−1) + bh) (3)

hn = (1− zn)⊙ hn−1 + zn ⊙ h̃n. (4)

where n ∈ {1, . . . , N}; rn is the reset gate and zn is the update gate; h̃n ∈
Rd1 represents the “candidate” hidden state generated by the GRU; hn ∈ Rd1

represents the real hidden state generated by the GRU; xn ∈ Rd0 represents
the word embedding vector of a token in the tweet; Wr, Wz, Wh ∈ Rd1×d0 and
Ur, Uz, Uh ∈ Rd1×d1 represent the weight matrices; br, bz, bh ∈ Rd1 represent
the bias terms; σ(·) represents the sigmoid function; ⊙ represents the Hadamard
product operation (element-wise multiplication).
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To capture the information from both the past and the future sequence,
the bi-directional GRU (biGRU), which processes the sequence in both the for-
ward and backward directions, has proven to be successful in various applications
[2,18]. In biGRU, the hidden states generated by processing the sequence in oppo-

site directions are concatenated as the new output: [
−→
h1∥
←−
h1,
−→
h2∥
←−
h2, · · · ,

−→
hN ∥

←−
hN ],

where
−→
hn ∥

←−
hn ∈ R2d1 , and the arrow represents the direction of the processing.

In the biGRU model, the final hidden states of the input sequence, when
processing it in opposite directions, are concatenated, to form the vector repre-
sentation of the tweet s:

s =
−→
hN ∥

←−
h1. (5)

1.2 BiGRU-CNN Model

The biGRU model attempts to propagate all the semantic and syntactic in-
formation in a tweet into two fixed hidden state vectors, which could become
a bottleneck, when there exist some long-distance dependencies in the tweet.
In [14], Recurrent Neural Network (RNN) outputs were fed into a CNN struc-
ture, to generate a vector representation, based on all the hidden states of the
RNN, rather than just the final hidden state. Specifically, a filter wf ∈ R2kd1 is
applied to k concatenated consecutive hidden states hi:i+k−1 ∈ R2kd1 to compute
ci, one value in the feature map corresponding to this filter:

ci = f(wT
f hi:i+k−1 + bf ), (6)

where f is the rectified linear unit function and bf ∈ R is a bias term.
A max-pooling operation is further applied over the feature map c =
(c1, c2, · · · , cN−k+1), to capture the most important semantic feature ĉ in each
feature map:

ĉ = max{c}. (7)

ĉ is the feature generated by filter wf . Filters with varying sliding window sizes
k can be applied, to obtain multiple features. The features generated by different
filters are concatenated, to form the vector representation of the tweet s.

1.3 AT-biGRU Model

Whilst they solve specific problems as above, neither the biGRU model nor the
biGRU-CNN model takes into account the target information. However, when
human annotators are asked to label the stance of a tweet towards a given
target, they are likely to keep the information about the target in their mind,
and pay more attention to the parts relevant to the target. The token-level
attention mechanism, firstly proposed in [2] for Machine Translation, allowed
the neural network to automatically search for tokens of a source sentence that
were relevant to predicting a target word, and mask irrelevant tokens; it released
the burden on RNN in compressing the entire source sentence into a static,



5

fixed representation. The attention mechanism has been successfully applied in
Question Answering [14], Caption Generation [17], Sentiment Analysis [18], etc.

In this paper, we propose to apply the attention mechanism to the biGRU
model, to enable the model to automatically compute proper alignments in the
tweet, which reflect the importance levels of different tokens in deciding the
tweet’s stance towards the given target, as shown in Fig. 1.

q

s

−→

h1

−→

h2

−→

h3

−→

hN

←−

hN

←−

h3

←−

h2

←−

h1

α1 α2 α3 αN

o

x1 x2 x3 xNy1 y2

hidden state 
generated by biGRU

word embedding
 of tweet token

word embedding
 of target token

target embedding

token level
attention

target-specific vector 
representation of tweet 

target-specific stance 
detection result

Fig. 1: The AT-biGRU model for target-specific stance detection.

In the AT-biGRU model, the vector representation s of the tweet is calculated
as the weighted sum of the hidden states:

s =
N∑

n=1

αnhn. (8)

In the above equation, the weight αn of each hidden state hn is computed by:

αn =
exp(en)∑N
n=1 exp(en)

, (9)

where en ∈ R is calculated through a multi-layer perceptron that takes hn and
the target embedding q as input, specifically:

en = att(hn, q) = wT
m(tanh(Wahhn +Waqq + ba)) + bm. (10)

where Wah ∈ R2d1×2d1 ; Waq ∈ R2d1×d2 ; ba, wm ∈ R2d1 ; bm ∈ R are token-level
attention parameters to optimise. In Section 1.5, we explore various ways to
generate the target embedding q ∈ Rd2 , based on the embeddings of the tokens
in the target Y , denoted by y1, y2 ∈ Rd0 . The weight αn can be interpreted as
the degree to which the model attends to token xn in the tweet, while deciding
the stance of the tweet towards the given target.
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1.4 AS-biGRU-CNN Model

The model we propose above is an improvement on prior research. However, it
can be further refined, as follows. The AT-biGRU model applies the attention
mechanism at the token level, which enables the model to pay more attention to
the tokens that have contributed to the stance decision towards specified targets.
However, in the AT-biGRU model, the vector representations of the tokens do
not have direct interaction with the vector representation of the target, which
is against the intuition that the target can influence the human annotators’
interpretation of each token. For example, the token ‘email’ in Table 1 implies
an Against stance towards the target “Hillary Clinton”, but has no obvious
influence on stances towards other targets; the token “cold” can either reveal the
user’s Favour stance towards the target “Climate Change is a Real Concern”,
or suggest the user’s Against stance towards the target “Donald Trump”.

Thus, we use a gated structure to extend the current token-level attention
mechanism to a more fine-grained semantic level, by introducing the direct in-
teraction between the hidden states and the vector representation of the target.
The gated structure can be embedded into the biGRU-CNN model, which results
in the AS-biGRU-CNN model, as shown in Fig. 2.
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Fig. 2: The AS-biGRU-CNN model for target-specific stance detection.

In Fig. 2, we introduce the target-specific hidden state h
′

n, to replace the
original hidden state hn generated by biGRU. The target-specific hidden state
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is calculated as follows:

h
′

n = an ⊙ hn. (11)

The attention vector an ∈ R2d1 decides which semantic features in each hidden
state are meaningful specifically towards the target, which is calculated through
a gated structure, as follows:

an = σ(Wm(tanh(Wahhn +Waqq + ba)) + bm). (12)

where Wah, Wm ∈ R2d1×2d1 ; Waq ∈ R2d1×d2 ; ba, bm ∈ R2d1 are semantic-level
attention parameters, to optimise in the gated structure. The methods to derive
the target embedding q ∈ Rd2 based on the embeddings of the tokens in the
target Y , denoted by y1, y2 ∈ Rd0 , will be explained in Section 1.5. The elements
in the attention vector an can be understood as the degrees to which the model
attends to the semantic features of token xn in the tweet, while deciding the
stance of the tweet towards the given target.

1.5 Target Embedding

The models proposed in Section 1.3 and Section 1.4 employ the embedding of
the given target q ∈ Rd2 , derived from the embeddings of the tokens in the
given target y1, y2 ∈ Rd0 . Without loss of generality, here we use a target with
two tokens, as an example. However, the methods can be directly applied on
targets with any number of tokens. To generate target embeddings of the same
dimensionality for the targets with different token numbers, we propose to use a
separate biGRU model, described in Section 1.1, with the target token embed-
dings y1 and y2 as inputs. For this scenario, the dimensionality of q, denoted
by d2 in Section 1.3 and Section 1.4, equals to the dimensionality of the con-
catenated final hidden states of the biGRU model, denoted by 2d1. Results of
the AT-biGRU model and the AS-biGRU-CNN model using the biGRU target
embedding are reported in Section 2.4. In some aspect-level Sentiment Analysis
works, researchers have been using the average of the aspect token embeddings
to encode the aspect [11,15]. We also use the averaging method as a baseline tar-
get encoding approach to derive the target embedding q, by averaging the target
token embeddings y1 and y2. For this scenario, d2 equals to the dimensional-
ity of the target token embeddings, denoted by d0. Results of the AT-biGRU
model and the AS-biGRU-CNN model using the averaging target embedding
are reported in Section 2.5.

1.6 Model Training

The vector representation of the tweet s is fed as input to a softmax layer, after
a linear transformation step that transforms it into a vector, whose length is
equal to the number of possible stance categories. The outputs of the softmax
layer (denoted by o in Figure 1 and Figure 2) are the probabilities of the tweet
X belonging to the stance category z, given the target Y , denoted by P (z|X,Y ).
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The stance category with the maximum probability is selected as the predicted
category, z∗:

z∗ = argmaxz∈zP (z|X,Y ). (13)

All the models are smooth and differentiable, and they can be trained in an
end-to-end manner, with standard back-propagation. We use the cross-entropy
loss as the objective function L(θ), which is defined as follows:

L(θ) = −
∑
X∈X

∑
z∈z

P
′
(z|X,Y ) · log(P (z|X,Y )). (14)

where X is the set of training data; z is the set of stance categories; P
′
(z|X,Y )

denotes the target stance distribution z givenX and Y ; θ is the set of parameters.

2 Experimental Results

2.1 Dataset Description

As said, we evaluated the effectiveness of the proposed models on the bench-
mark Stance Detection dataset for the SemEval-2016 Task 6.A [8]. We used
the exact same data as provided to the contestants for this task, with no extra
labelled data [4] or domain corpus [1,9] employed. The benchmark Stance Detec-
tion training dataset contained 2,914 tweets relevant to five targets: “Atheism”
(A), “Climate Change is a Real Concern” (CC), “Feminist Movement” (FM),
“Hillary Clinton” (HC) and “Legalisation of Abortion” (LA). Each tweet was
annotated as Favour, Neither or Against towards one of the five targets. The
benchmark Stance Detection test dataset contained 1,249 tweets, as well as the
interested targets. Detailed statistics about the dataset can be found in Table 2,
where “#” represents the number of tweets, “%F”, “%A” and “%N” represent
the percentages of tweets with Favour, Against and Neither stances towards the
targets, respectively.

Table 2: Statistics of the benchmark target-specific stance detection dataset.

Target
Training Test

# %F %A %N # %F %A %N

A 513 17.9 59.3 22.8 220 14.5 72.7 12.7

CC 395 53.7 3.8 42.5 169 72.8 6.5 20.7

FM 664 31.6 49.4 19.0 285 20.4 64.2 15.4

HC 689 17.1 57.0 25.8 295 15.3 58.3 26.4

LA 653 18.5 54.4 27.1 280 16.4 67.5 16.1

All 2914 25.8 47.9 26.3 1249 24.3 57.3 18.4
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2.2 Comparison Models

We compared the proposed models with the two best performing models in the
SemEval-2016 Task 6.A: (1) MITRE [19], which trained separate Long Short-
Term Memory (LSTM) networks with a voting scheme for different targets —
the LSTM networks were pre-trained, by an auxiliary hashtag prediction task
on 298,973 self-collected tweets; (2) pkudblab [16], which also trained separate
CNN classifiers for different targets, with a voting scheme employed both in
and out of each epoch, to improve the performance. We also compared against
the SVM classifiers trained on the corresponding training datasets for the five
targets, using word n-grams and character n-grams features, as reported in [8],
representing the previous best performer for this task. Additionally, to illustrate
the influence of the token-level and semantic-level attention mechanism, we in-
cluded the performance comparison between the biGRU model (Section 1.1) and
the AT-biGRU model (Section 1.3), the biGRU-CNN model (Section 1.2) and
the AS-biGRU-CNN model (Section 1.4).

2.3 Experimental Settings and Model Configuration

In line with former works, we first trained separate classifiers for different tar-
gets. To obtain a fair comparison, we employed the only evaluation metric in the
SemEval-2016 Task 6.A, which was the macro-average of the F1 scores for the
Favour and Against stance categories. This evaluation metric will be referred to
as “macro-average F1 score” in this paper for simplicity purpose. In the eval-
uation stage of SemEval-2016 Task 6.A, the target information of each tweet
was ignored, in order to measure each team’s overall performance, rather than
performance on each separate target. This was because the training datasets for
different targets had different percentages of tweets with Favour, Against and
Neither stances, as well as different percentages of tweets expressing stances by
mentioning the given target and by mentioning other targets. Thus, this eval-
uation metric can reflect each team’s overall ability in dealing with different
scenarios. It should be noted that even though separate classifiers were trained
for different targets, we used the same configurations for target-specific classi-
fiers, to make sure our proposed models can be easily applied to any other target,
as well as effectively demonstrate the advantages of target-specific tweet vector
representation, by eliminating the effects of target-specific model settings. Vari-
ous methods were applied to avoid overfitting. We performed a standard 5-fold
cross-validation. For each round of cross-validation, we experimentally set the
maximum number of epochs to 50, and located the epoch that achieved the best
performance on the validation dataset. The post-softmax probabilities of the 5
trained classifiers were averaged, to obtain the probabilities of a tweet in the test
dataset belonging to the three stance categories.

We implemented the proposed models using Theano3 and Keras4 .

3http://deeplearning.net/software/theano/
4https://keras.io/

http://deeplearning.net/software/theano/
https://keras.io/
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For comparison fairness, all the neural network-based models in the experi-
ments also used the same hyper-parameters (as illustrated below), which were
selected using grid search on the baseline biGRU model. In the experiments,
all the word embeddings were initialised by the Glove [10] 100-dimensional pre-
trained embeddings on Wikipedia data, i.e., d0 = 100. We applied dropout [13]
with probability 0.2 on the embedding layer. The word embeddings were fine-
tuned during the training process, to capture the stance information. From the
preliminary experiments, we observed that the models that shared the embed-
ding layer between the tweets and the targets performed significantly better than
the models that did not. We chose the dimensionality of hidden states (d1) of
both the GRU encoding the tweet and the GRU encoding the target to be 64,
and the GRU weights are initialised from a uniform distribution U(−ϵ, ϵ). Fol-
lowing [5], we added a dropout level of 0.3 between each recurrent connection in
the GRU that encoded the tweets. We further selected the hyper-parameters for
the CNN structure on top of the fixed hyper-parameters of the biGRU model.
Following [6], we used filters of k ∈ {3, 4, 5}, with widths equal to the dimen-
sionality of the outputs of the biGRU, which was 128 in this case. There were
100 filters for each size. To increase the robustness of the models to overfitting,
a dropout level of 0.5 was further applied before the softmax layer.

We used the Adam optimiser [7] for back-propagation with the two mo-
mentum parameters set to 0.9 and 0.999, respectively. The mini-batch size was
set to 16. The code for the experiments is available at https://github.com/
zhouyiwei/tsd.

2.4 Using the biGRU Target Embedding

The experimental results are shown in Table 3. Besides the evaluation metric
of the SemEval-2016 Task6.A, we also provide the macro-average F1 scores of
different targets, as references. From the comparison between the biGRU model
and the biGRU-CNN model, it can be seen that the CNN structure on top
of the biGRU model can help to generate more compact and abstract vector
representations of the tweets for Stance Detection.

Both neural network-based models that incorporate target information when
generating vector representations for the tweets, i.e., the AT-biGRU and AS-
biGRU-CNN, outperform other neural network-based models that did not, i.e.,
MITRE, pkudblab, biGRU and biGRU-CNN. Specifically, the state-of-the-art
token-level attention mechanism helps to increase the performance of the bi-
GRU model by 0.32 in the overall macro-average F1 score. The injection of
target information through the proposed semantic-level attention mechanism in
the biGRU-CNN model, which results in the AS-biGRU-CNN model, leads to
a more significant improvement (1.71) on the basis of the biGRU-CNN model,
which makes it the best performing model among all the neural network-based
models. This demonstrates the effectiveness of attention mechanisms in con-
structing a composite vector representation between the target and contextual
information provided in the tweet. The proposed AS-biGRU-CNN model with

https://github.com/zhouyiwei/tsd
https://github.com/zhouyiwei/tsd
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semantic-level attention, however, has stronger capability in modelling the com-
plex interaction between the target and each token in the tweet, and generating
an expressive conditional vector representation of the tweet, with respect to the
target, compared with the AT-biGRU model with the token-level attention.

Moreover, the AS-biGRU-CNN model outperforms the traditional SVM al-
gorithm, with word n-grams and character n-grams features reported in [8] by a
substantial margin, in the absence of feature engineering and target-specific tun-
ing, which justifies the motivation to automatically intensify the features that
are essential to the target, and “dilute” the features that are not.

Table 3: Performance of target-specific stance detection based on the macro-
average F1 score, using separate classifiers.

Model
Target

Overall
A CC FM HC LA

SVM 65.19 42.35 57.46 58.63 66.42 68.98

MITRE 61.47 41.63 62.09 57.67 57.28 67.82

pkudblab 63.34 52.69 51.33 64.41 61.09 67.33

biGRU 65.26 43.08 56.53 55.60 61.39 67.65

biGRU-CNN 63.42 42.91 58.69 55.11 60.55 67.71

AT-biGRU 62.32 43.89 54.15 57.94 64.05 67.97

AS-biGRU-CNN 66.76 43.40 58.83 57.12 65.45 69.42

2.5 Using the Averaging Target Embedding

In Table 3, we used biGRU to generate the vector representations for the targets.
Additionally, we further experimented with the AT-biGRU and AS-biGRU-CNN
models, using the averaging target embeddings. The overall macro-average F1
score of the AT-biGRU model increases from 67.97 to 68.30, while the macro-
average F1 score of the AS-biGRU-CNN model decreases from 69.42 to 68.35.
One possible explanation could be that a simple averaging approach is insufficient
to capture the semantic meanings of the targets, thus for the biGRU-CNNmodel,
which has stronger expressive power than the biGRU model in target-specific
Stance Detection, it is helpful to use more flexible target embeddings to perform
complex inference. However, for the AT-biGRU model, the target embeddings
generated by biGRU surpass its capability to learn and generalise. This is also
the reason why stacking the CNN structure on top of the AT-biGRU model cannot
help to improve the performance, as it does in the AS-biGRU-CNN model.

2.6 Using Combined Classifiers

In the Stance Detection dataset for the SemEval-2016 Task 6.A, the training
data for all the targets were of similar sizes, except for the target “Climate
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Change is a Real Concern”. There were only 395 items in its training data and
they were highly biased, with only 3.8% of them coming from the Against cate-
gory. As a result of this, all the models in Table 3 cannot achieve a comparable
performance on this target, when compared with other targets. When there was
not enough training data for some targets, or the training data for some targets
was highly biased, it was not possible to guarantee the performance of indepen-
dent classifiers for these targets. For this case, we hypothesised that a combined
classifier of all the targets can alleviate this problem, through jointly modelling
the interaction between the stances and contexts of all the available targets.
This way, when performing Stance Detection on the “Climate Change is a Real
Concern” target, the classifier can employ — or even transfer — the knowledge
about the intricate connection between the stances and contexts learnt from the
training data of other targets. Motivated by this idea, we further trained com-
bined classifiers based on the proposed models, using all the training data, rather
than trained separate classifiers for different targets. The combined classifiers’
performances are shown in Table 4.

Table 4: Performance of target-specific stance detection based on the macro-
average F1 score, using combined classifiers.

Model CC Overall

SVM 47.76 62.06

biGRU 54.14 62.82

biGRU-CNN 54.57 62.70

AT-biGRU 55.69 63.36

AS-biGRU-CNN 58.24 67.40

In Table 4, we use the combined SVM classifier reported in [8] as a baseline.
For combined classifiers, richer semantic and syntactic information was needed
in the tweets’ vector representations, as it was necessary to additionally encode
the relatedness and diversity of different targets in stance expressions. This was
a much harder task, as the combined classifier had to employ useful knowledge
from other targets and avoid the impairment of useless information. For this
reason, we continued to employ the biGRU model to generate the target em-
beddings, which had stronger expressive power than the averaging method. The
difficulty level of this task is illustrated by the significant diminished overall
macro-average F1 score of the SVM combined classifier in Table 4, compared
with the overall macro-average F1 score of the SVM separate classifiers in Ta-
ble 3. We experimentally increased the dimensionality of the pre-trained word
embedding vectors from 100 to 300, and the dimensionality of the hidden states
of GRU from 64 to 256, to satisfy the above requirements. All the other hyper-
parameters were kept the same, as illustrated in Section 2.3.

From Table 4, it can be observed that for the target “Climate Change is
a Real Concern”, it is helpful for all models to employ the training data from
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other targets. Comparatively, combined classifiers using models based on neu-
ral networks achieve much better macro-average F1 scores on this target than
the combined classifiers using the traditional SVM algorithm. This is because
the neural network-based models employed continuous vector representations of
tweets, which allows them to more easily incorporate information from other
domains, compared with the traditional SVM algorithm, which employs sparse
and discrete vector representations, based on feature engineering. The combined
classifier using the proposed AS-biGRU-CNN model yields the best performance
so far on the “Climate Change is a Real Concern” target, which further illus-
trates the model’s strong ability to capture the generality in stance expressions
of different targets. However, the overall performance of the combined classifiers
all decreases. This is because the performances for targets with sufficient train-
ing data can be negatively influenced by the redundant information from other
targets. Nevertheless, the AS-biGRU-CNN model still yields the best overall
performance, using only combined classifiers, which shows the model’s power in
modelling the differences in stance expressions of different targets.

3 Related Work

Very few recent researches attempted to tackle the target-specific Stance Detec-
tion task on tweets, such as [1, 4, 9, 16, 19]. [1] focused on predicting the stances
towards targets with no training data provided, which was the SemEval-2016 Task
6.B, a different task to the one studied here. For the problem we tackled in this
work, there was a training dataset for each specified target, to effectively update
the states and memories of the encoders. [4] studied the correlation between
sentiment and stance, and the sentiment labels of the tweets were additionally
needed to train the model. Thus, the settings of both above researches were dif-
ferent from the settings of the SemEval-2016 Task 6.A. [16,19] ignored the target
information while performing classification, whereas our experiments have clearly
proven that the target-specific vector representation of tweets can substantially
boost the performance. [9] relied on feature engineering and large domain cor-
pus, to perform feature selection, which was hard to generalise to other targets;
and the collection of domain corpus additionally added difficulty, because of
the limitations of the Twitter API. The attention-based models proposed in this
work, on the contrary, are fully automatic, with minimum supervision. We did
not collect any extra domain corpus or use any linguistic tools, and no feature
engineering was needed. Since no target-specific configurations are involved, the
proposed models can be directly applied to other targets.

Another track of relevant research is aspect-level Sentiment Analysis on texts
[11,12,15]. In this task, the text to be analysed, or at least part of the text, focuses
on the aspects of interest, by explicitly mentioning the aspects, which renders
the problem of modelling the importance and relatedness of tokens with respect
to the aspects, easier. However, this is not the case for the target-specific Stance
Detection task. Thus, a deeper integration between the target and the tweet, and
a more complex inference mechanism, are needed, as proposed in our research.



14

4 Conclusion

To the best of our knowledge, we are the first ones to effectively apply the
traditional token-level attention mechanism to the problem of target-specific
Stance Detection in tweets, which achieves better performance than other neu-
ral network-based models. Moreover, we propose to use a gated structure on the
basis of the biGRU-CNN model, to embed target information into the tweet’s
vector representation, aiming at introducing the direct semantic interaction be-
tween the target and each token in the tweet, to perform target-specific Stance
Detection. The proposed model employs a semantic-level attention mechanism,
which is more fine-grained than the token-level attention mechanism. The pro-
posed semantic-level attention mechanism searches for certain semantic features
of each token in the tweet, based on the information contribution these seman-
tic features have, in deciding the stance of the tweet, towards the given target.
For the resulting AS-biGRU-CNN model, not only the tweet’s representation
vector, but also the representation vectors of the tokens are target-specific. The
experimental results demonstrates that the proposed model outperforms several
state-of-the-art baselines, in terms of macro-average F1 score, on the bench-
mark target-specific Stance Detection dataset of tweets, for both the scenario
when separate classifiers are allowed for different targets and the scenario when
only one combined classifier is allowed. Thus, the AS-biGRU-CNN model has
stronger expressive power, and higher generalising capability, to extract target-
specific knowledge from annotated datasets, to perform target-specific Stance
Detection on tweets. Importantly, unlike previous works on target-specific de-
tection in tweets, the models employed in this work do not rely on any extra
annotation, domain corpus or feature engineering, and can be easily generalised
to other targets of interest.
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